Learning techniques for improving control systems performance using model-free approaches (LTIPerforM), 83114 EUR, national research grant Young Teams (TE), financed by the Executive Agency for Higher Education, Research, Development and Innovation Funding - UEFISCDI), 2015-2017, project code: PNII-RU-TE-2014-4-0207


The team:


Abstract:


Estimated results:


Research reports:


Overall results (2015-2017):


Results in 2017:

  1. Radac M.-B., Precup R.-E., Data-Driven Model-Free Slip Control of Anti-lock Braking Systems Using Reinforcement Q-Learning, Neurocomputing, vol. pp, no. 1, pp. 1-13, 2017, 2017 impact factor (IF) = 3.317 (www.sciencedirect.com).
  2. R.-E. Precup, M.-B. Radac, R.-C. Roman, and E. M. Petriu, Model-free sliding mode control of nonlinear systems: Algorithms and experiments, Information Sciences, vol. 381, no. 3, pp. 176-192, 2017, impact factor (IF) = 4.832. (www.sciencedirect.com).
  3. R.-E. Precup, R.-C. David, and E. M. Petriu, Grey Wolf Optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity, IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 527-534, 2017, impact factor (IF) = 7.168. (www.ieeexplore.ieee.org).
  4. C. Pozna and R.-E. Precup, On a translated frame-based approach to geometric modeling of robots, Robotics and Autonomous Systems, vol. 91, pp. 49-58, May 2017, impact factor (IF) = 1.950, (www.sciencedirect.com).
  5. D.-A. Dutescu, M.-B. Radac and R.-E. Precup, Model Predictive Control of a Nonlinear Laboratory Twin Rotor Aero-dynamical System, Proceedings of 15th IEEE International Symposium on Applied Machine Intelligence and Informatics (SAMI 2017), Herl'any, Slovakia, pp. 37-42, 2017, (ieeexplore.ieee.org).
  6. M.-B. Radac, R.-E. Precup, and R.-C. Roman, Anti-lock Braking Systems Data-Driven Control Using Q-Learning, Proceedings of the 2017 IEEE International Symposium on Industrial Electronics (ISIE 2017), Edinborough, UK, pp. 418-423, 2017, ( ieeexplore.ieee.org).
  7. M.-B. Radac, R.-E. Precup, and R.-C. Roman, Multi Input-Multi Output Tank System Data-Driven Model Reference Control, Proceedings of the 13th IEEE International Conference on Control & Automation (ICCA 2017), Ohrid, Macedonia, pp. 1078-1083, 2017 ( ieeexplore.ieee.org).
  8. R.-C. Roman, R.-E. Precup, and M.-B. Radac, Model-Free Fuzzy Control of Twin Rotor Aerodynamic Systems, Proceedings of the 25th Mediterranean Conference on Control and Automation (MED 2017), Valletta, Malta, pp. 559-564, 2017 (ieeexplore.ieee.org).
  9. R-.C. Roman, R.-E. Precup, M.-B. Radac and E. M. Petriu, Takagi-Sugeno Fuzzy Controller Structures for Twin Rotor Aerodynamic Systems, Proceedings of the 2017 IEEE International Conference on Fuzzy Systems (FUZZIEEE 2017), Napoli, Italy, pp. 1-6, 2017, (ieeexplore.ieee.org).
  10. A.-I. Szedlak-Stinean, R.-E. Precup, and E. M. Petriu, Fuzzy and 2-DOF Controllers for Processes with a Discontinuously Variable Parameter, Proceedings of 14th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2017), Madrid, Spania, pp. 431-438, 2017 (www.scitepress.org).

Results in 2015-2016:

  1. Radac M.-B., Precup R.-E., Roman R.-C., Model-Free control performance improvement using virtual reference feedback tuning and reinforcement Q-learning, International Journal of Systems Science (Taylor & Francis), vol. pp, no. 1, pp. 1-13, 2016, 2016 impact factor (IF) = 1.947, relative influence score = 0.87 (www.tandfonline.com).
  2. Radac M.-B., Precup R.-E., Three-level hierarchical model-free learning approach to trajectory tracking control, Engineering Applications of Artificial Intelligence (Elsevier), vol. 55, pp. 103-118, 2016, 2016 impact factor (IF) = 2.368, relative influence score = 2.116 (www.sciencedirect.com).
  3. Roman R.-C., Radac M.-B., Precup R.-E., Multi-input-multi-output system experimental validation of model-free control and virtual reference feedback tuning techniques, IET Control Theory and Applications, vol. 10, no. 12, pp.1395-1403, 2016, 2016 impact factor (IF)= 1.957, relative influence score = 1.856, (http:// digital-library.theiet.org).
  4. Roman R.-C., Radac M.-B., Precup R.-E., Petriu E. M., Data-driven Model-Free Adaptive Control Tuned by Virtual Reference Feedback Tuning, Acta Polytechnica Hungarica, vol. 13, no. 1, pp. 83-96, 2016, 2016 impact factor (IF) = 0.544, relative influence score = 0.313 (www.uni-obuda.hu/journal/).
  5. Roman R.-C., Radac M.-B., Precup R.-E., Petriu E. M., Virtual Reference Feedback Tuning of MIMO Data-Driven Model-Free Adaptive Control Algorithms, in: Technological Innovation for Cyber-Physical Systems, L. M. Camarinha-Matos, A. J. Falcao, N. Vafaei and S. Najdi, Eds., IFIP Advances in Information and Communication Technology, vol. 470 (Springer International Publishing), pp. 253-260, 2016, indexed in Scopus, DBLP (link.springer.com).
  6. Radac M.-B., Precup R.-E., Improving Model Reference Control Performance Using Model-Free VRFT and Q-Learning, Proceedings of 2016 20th International Conference on System Theory, Control and Computing (ICSTCC 2016), Sinaia, Romania, pp. 7-13, 2016, to be indexed in IEEE Xplore, INSPEC ( ieeexplore.ieee.org).
  7. Radac M.-B., Precup R.-E., Hierarchical Data-Driven Model-Free Iterative Learning Control Using Primitives, Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), Budapest, Hungary, pp. 2785-2790, 2016, to be indexed in IEEE Xplore, INSPEC ( ieeexplore.ieee.org).
  8. Roman R.-C., Radac M.-B., Precup R.-E., Mixed MFC-VRFT Approach for a Multivariable Aerodynamic System Position Control, Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016), Budapest, Hungary, pp. 2615-2620, 2016, to be indexed in IEEE Xplore, INSPEC ( ieeexplore.ieee.org).
  9. Radac M.-B., Precup R.-E., Roman R.-C., Data-Driven Virtual Reference Feedback Tuning and Reinforcement Q-learning for Model-Free Position Control of an Aerodynamic System, Proceedings of 24th Mediterranean Conference on Control and Automation MED'2016, Athens, Greece, pp. 1126-1132, 2016, (ieeexplore.ieee.org).
  10. Precup R.-E., David R.-C., Petriu E. M., Szedlak-Stinean A.-I., Bojan-Dragos C.-A., Grey Wolf Optimizer-Based Approach to the Tuning of PI-Fuzzy Controllers with a Reduced Process Parametric Sensitivity, Proceedings of 4th IFAC International Conference on Intelligent Control and Automation Sciences ICONS 2016, Reims, France, 2016, IFAC-PapersOnLine, vol. 48, no. 5, pp. 55-60, 2016, (www.sciencedirect.com).
  11. Bojan-Dragos C.-A., Precup R.-E., Preitl S., Szedlak-Stinean A.-I., Petriu E. M., Particle Swarm Optimization of Fuzzy Models for Electromagnetic Actuated Clutch Systems, Proceedings of 18th Mediterranean Electromechanical Conference MELECON 2016, Limassol, Cyprus, pp. 1-6, 2016, indexed in IEEE Xplore, INSPEC (ieeexplore.ieee.org).
  12. Hedrea E.-L., Radac M.-B., Precup R.-E., Virtual Reference Feedback Tuning for Position Control of a Twin Rotor Aerodynamic System, Proceedings of 11th IEEE International Symposium on Applied Computational Intelligence and Informatics SACI 2016, Timisoara, Romania, pp. 57-62, 2016, indexed in IEEE Xplore, INSPEC (ieeexplore.ieee.org).
  13. Precup R.-E., David R.-C., Petriu E. M., Radac M.-B., Voisan E.-I., Experiment-Based Comparison of Nature-Inspired Algorithms for Optimal Tuning of PI-Fuzzy Controlled Nonlinear DC Servo Systems, Proceedings of 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion SPEEDAM 2016, Capri, Italy, pp. 1263-1268, 2016, indexed in IEEE Xplore, INSPEC (ieeexplore.ieee.org).



Home